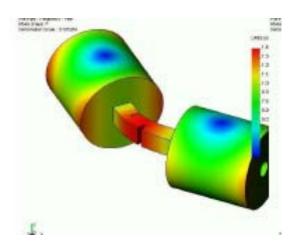


April 27th, 2009

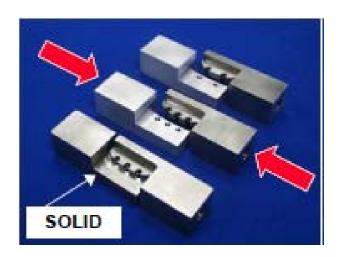
Sarah K. Leming
Sandia National Laboratories
Albuquerque, NM, USA
sleming@sandia.gov



Ultimate Goal

- To develop predictive simulations of full-up systems, including energy dissipating mechanisms, such as bolted joints
 - Meaningful predictions of system response to realistic loads
 - "Before-built" predictions to guide design decisions
 - Predict response and margin to un-testable environments

Ultimate Goal Cont.


- Discovery and validation experiments
 - Give intuition to the modeler
- Long-term: Compile a database of experimental data to use in future model development and validation
 - Make use of experimental data and theories to explain that data.
 - Primary focus thus far: Interfaces with bolted joints
 - Majority of work with single joints in shear

Where Do We Go From Here?

- Many energy-dissipating mechanisms
 - Bolted, threaded, tape joints...
 - •Foam
 - Interfaces
- •Considered the major contributors to response of systems
 - Determined that bolted joints were a major contributor
 - •Expand our understanding in more complex geometries and environments
 - •Also determined that "top-down" or "hybrid" approaches may lead to more predictive models

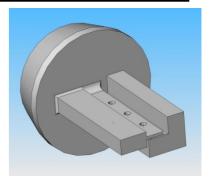
How Do We Get There?

- To gain insight into the behavior of real bolted joints in fullup systems during realistic environments:
 - Variety of inputs
 - Complex shock waveform, random vibration
 - Multiple joints
 - Bolt rings, flange joints, etc.
 - Combination Loading
 - Past work has focused on joints in shear. Real loading includes bending, etc.
 - Explore "top-down" and "hybrid" approaches
 - Empirical approaches to subsystem damping
 - Variability and Uncertainty

Predictive Capabilities

Repeatability and Variability Experiments (Mike Starr)

- A phenomenologically-based analysis to capture variability intrinsic to the assembled lap joint structure due to interface surface features and interface misalignment.
- Examine sample-to-sample variation and assembly-to-assembly variation of the same sample
- Experimental results will be compared to computational ones (Adagio FE model)
- Random and shock inputs will also be included for future model validation


Predictive Capabilities

- Non-dimensional relationship for predictive modeling (Mike Starr)
 - Non-dimensional parameter study indicates a relationship between ratios of key joint characteristics (i.e. cyclic load amplitude/clamping load) and dissipation
 - Tailored variability study to consider the cyclic load/clamping load ratio
 - Will expand to vary thickness and contact area of the lap specimens
 - If verified experimentally, would develop set of key parameters to populate a model for unique joints without the need for extensive experimentation or simulation

Multiple Joints/Shock Loading

- Bolt Rings, Multi-Joint (Mike Jew)
 - Study dissipation in shock
 - Several different configurations,
 - Multiple bolts in one lap joint (Tab)
 - Multiple single lap joints in one assembly ("layer cake")
 - Bolt ring configuration (24 bolts around circumference
 - Different materials-steel, aluminum
 - Top-down modeling

Tab (serial)

Layer Cake

Combination Loading

- Previously, the majority of work has focused on joints in shear
 - Actual environments include more complex loading (bending, torsion, etc.)
 - Choosing from the following
 - Big Mass Device with offset mass to provide moment with axial shear
 - Big Mass Device with a static moment from a cable
 - 6-DOF system to provide combined loads
 - Use piezo-washers to provide time-varying bolt loads to lap joint

