Shakedown at frictional contact
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We consider a system of contacting elastic bodies,
discretized using the finite element method with
incremental Coulomb friction boundary conditions.

The external loading
F(t) :F0+>\F1(t)

comprises a constant ‘mean load” F'y and a
periodic time-varying load AF'i(t) where X is a
scalar load factor.

We assume that the loading is never sufficient to
cause ‘gross slip’ (sliding) in which all the contact
nodes slip at the same time. However, at any given
time a subset of the contact nodes may slip - a
state known as ‘microslip’.



After an initial transient, the long-time steady
state might involve:-

e Shakedown: Slip displacements during the
transient phase lead to a state of residual stress
that prevents all slip in the steady state.

e Cyclic slip: The slip scenario is exactly
repeated during each loading period and the
total accumulated slip at each node during one
period is zero.

e Ratcheting: The slip scenario is exactly
repeated during each loading period, but a
constant total slip is accumulated at each node
during one period each period. This is possible
only if the system has a rigid-body mode.



This behaviour is closely analogous with that of
elastic-plastic systems under periodic loading.

However, there are important differences:-

1) The ‘failure’ (i.e. slip) condition for Coulomb
friction is a dimensionless coeflicient of friction,
rather than a yield stress.

One consequence is that if the complete loading
scenario F'(t) is multiplied by a positive scalar
factor, the long term behaviour will be qualitatively
unchanged and the nodal forces and displacements
will all be increased by the same factor.

2) The flow rule for frictional slip is non-associative.



For elastic-plastic deformation with an associative
flow rule, Melan’s theorem applies.

Many frictional systems appear to obey a form of
Melan’s theorem.

However, the proof of Melan’s theorem for
plasticity depends on the flow rule being
associative and this is not satisfied by the Coulomb
friction law.

We have recently proved that Melan’s theorem
applies to elastic systems with Coulomb friction
contact conditions if and only if there is no
coupling between tangential (slip) displacements
and normal contact reactions.

Counter examples can be found for all coupled
systems in that the final steady state can depend
upon the initial conditions.



We assume all nodes remain in contact (w; = 0)
and define the instantaneous state as a point P in
the space v; of slip displacements.

The frictional constraints (incipient forward or
backward slip) at node j are defined by

(Aji — [Bji)vi
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Fach of these 2N constraints (2 for each node) is a
directional hyperplane in v;-space.



We illustrate this for a simple two-node system.
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The four constraints exclude the (shaded) region of

v1v9-space on one side of the lines LILIIL,IV
respectively.

The instatansous state of the system must lie in
the unshaded region.

If the external loads cause IV to move to exclude
more space, P is ‘pushed” upwards (0 > 0).



Now imagine the external loads changing
periodically, so that the lines [ILIII.IV move back
and forth as shown.

We can identify the extreme positions I” etc. where

each constraint excludes the maximum space.
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Shakedown is possible if and only if these extreme
constraints leave a non-null safe shakedown region.



Suppose IV advances to IV and then recedes,
after which I advances to I¥ and recedes.

The point P is moved monotonically towards the
safe shakedown region SD.

This is always true if the safe shakedown region is
a quadrilateral.



If the safe shakedown region is a triangle, the
steady state can be either cyclic slip or shakedown,
depending on the initial condition (position of P).

Vi

In the case illustrated, P could end up cycling
between P, and Ps.



If the scalar load factor A is increased from zero,
the safe shakedown region is initially quadrilateral.
At some critical value Az, it becomes triangular,
and then at a higher critical value Ay it becomes
null.

e For A < A; we have shakedown for all initial
conditions.

e For A\;, < A\ < Ay we may have shakedown or
cyclic slip depending on the initial conditions.

e For A > )y shakedown is impossible and we
have cyclic slip for all initial conditions.

If the system is uncoupled, the constraints are
parallel in pairs and the safe region is a
parallelogram. It can therefore never reduce to a
triangle and A;, = Ay.

This confirms that Melan’s theorem applies when
the system is uncoupled.



Ratcheting

If the system has a rigid-body mode, the stiffness
matrix is singular and the constraints are all
parallel to a common line.

For the two-node system with possible rigid-body

motion v = vy, they are at 45°.
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With appropriate motion of the constraints, we can
obtain the ratcheting motion illustrated.



However, if there is a safe shakedown region (a
strip in this case), the system must shakedown.

Motion of P depends on which of the constraints is
most advanced at a given time. We can project
these positions onto the line orthogonal to the
rigid-body motion and plot them as a function of
time.




The motion of P is equivalent to the trajectory of
a ball dropped through the space between the
constraints in the figure.

Either cyclic slip or ratcheting is possible
depending on the sequence of constraint motions.

Depending on the exact form of the periodic load
F(t), increasing A can cause a transition to either
ratcheting or cyclic slip and further transitions
between these states can occur at higher values of

A.



For a three-node system with a rigid-body mode,
the constraints will be planes all parallel to a
common line v; = vy = ws.

Looking along this line, we can track the
deformation of the structure in response to the
(now six) moving constraints.
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Conclusions

The motion of the point P(vy, vy, ...) in v;-space
provides useful information about the kinds of
behaviour to be expected under time-varying loads.

The lower bound A\; below which shakedown
occurs for all initial conditions can be found by
solving subsets of the frictional constraints as
equalities and checking the remaining constraints
as inequalities.

The upper bound A; above which shakedown is
impossible can also be found this way, or
alternatively by using a constrained optimization
technique.

In systems with a rigid body mode, all the
constraints are parallel to a given line and evolution
of the system can be tracked by projecting the
space onto a hyperplane perpendicular to this line.
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