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EPISTEMIC VS. ALEATORY 
  Epistemic (or model or reducible) uncertainty 

 Observed when the response of the system cannot be matched by 
the model predictions irrespectively of the model parameters, e.g. 
 curved beam modeled by a straight one, nonlinear system 
represented by a linear one, … 
 

Aleatory (or parameter or irreducible) uncertainty 
 Observed when the response of the system can be matched by the 
model predictions for an appropriate choice of the parameters which 
is different for different structures, e.g. random Young’ modulus 
 
Improving the model tends to reduce epistemic uncertainty but 
increase aleatory uncertainty 
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EPISTEMIC VS. ALEATORY 
  

The “type” of model affects the balance of epistemic/aleatory uncertainty 
 
Detailed (finite element) model: 
  Aleatory uncertainty can be introduced only in the “mechanical/ 
 material” properties 
 
Global (modal) model: 
  Aleatory uncertainty extends to broad set of parameters (e.g. elements 
of stiffness matrix) that can include some uncertainty seen as epistemic 
in the detailed model, e.g. curvature of beam including in stiffness matrix 



Ira A. Fulton Schools of Engineering 
SEMTE, Faculties of Mechanical and Aerospace Engineering 

Structural Dynamics Group 
  
  

 

UNCERTAINTY MODELING:  
NOT AN AFTERTHOUGHT! 

  Scenario 1: All structures of interest are tested 
   Proceed with deterministic identification and adjust model parameters 
  from structure to structure. No uncertainty modeling is needed. 
 

Scenario 2: a few nominally identical structures are tested and many 
more are of interest (usual case). Uncertainty modeling is needed. How? 
 
 Example: FRF of a N dof system is measured and damping ratios ζi   
   are observed to be uncertain. 
 
How do we proceed? Two options… 
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UNCERTAINTY MODELING:  
NOT AN AFTERTHOUGHT! 

  (1) proceed with deterministic identification and backtrack an 
    uncertain model of the parameters. 
 

 FRF(j) → ζ(j) using deterministic ID, then represent ζ(j)  using an 
  uncertainty model and identify the  parameters θ of this model. 
 

(2) create and identify an uncertain model of the structure (or model of 
the uncertain structure) that combines structural and uncertainty aspects. 
That is, express 

FRF(j) = FRF(j) [ζ(j) (θ)] 
and identify directly (e.g. maximum likelihood) the  parameters θ . 
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UNCERTAIN MODEL VALIDATION 
  Uncertain model = structural + uncertainty model 

 

Option 1: 
 Validate the structural model in detail (epistemic uncertainty?) and 
the uncertainty modeling separately. 
 

Option 2: 
  Validate the overall model on the responses of interest and assess 
whether the model statistically predicts these responses, e.g. they lie 
within the 5-95 percentile confidence (uncertainty) band with 10% 
probability. 
 
Should we still focus on validating/improving structural model? 
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UNCERTAIN MODEL VALIDATION 
  Uncertain model = structural + uncertainty model 

 

Option 1: 
 Validate the structural model in detail (epistemic uncertainty?) and 
the uncertainty modeling separately. 
 

Option 2: 
  Validate the overall model on the responses of interest and assess 
whether the model statistically predicts these responses, e.g. they lie 
within the 5-95 percentile confidence (uncertainty) band with 10% 
probability. 
 
Should we still focus on validating/improving structural model? YES!!! 
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MODELING COMPLEXITY 
  Does the model used when uncertainty is present need to exhibit full 

complexity? 
 

Not necessarily - maybe or maybe not… 
 

Fine details in the response may not need to be captured as they will 
become “invisible” when uncertainty is introduced. 
 
Classical Example: 
Probability density function (stationary) of the response of a Duffing 
oscillator to white noise excitation does not require the classic single- 
frequency analyses but its spectrum estimation may involve it. 
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UNCERTAINTY MODELING 
  

 

Tools for Uncertainty Modeling: 
Probability Theory, Fuzzy Logic, Possibility Theory,... 
 

Random variables, stochastic processes and fields: 
  Uncertain parameters modeled through their joint probability density 
function the estimation of which in general requires an extraordinary 
amount of information 
 
 

Assumptions are necessary! 
 

(a) Ad-hoc distribution selection 
(b) “Stochastic Parametrizations” 
(c) Maximum entropy approach 
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(a) Ad-hoc distribution modeling 
 Use a combination of independence assumptions (joints → marginals) 
and prescribed distributions (Gaussian/normal, lognormal, uniform,..) 
to characterize the problem. Issues: 
* many different “types” of assumptions 
* danger of violating physics 
 Example: Gaussian distribution for stiffness is often accepted if the 
mean/standard deviation is large (say 10) as probability of negative 
value is “small”. Yet, mathematically the variance of response is ∞. 
 This issue is reflected by the non-convergence of the sample variance 
as the number of samples increases. 
One solution: truncated Gaussian but where to truncate? 

UNCERTAINTY MODELING 
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(b) “Stochastic Parametrization” 
 Represent random variables (processes, etc.) in a “modal” form, i.e. 
through an expansion on a random basis but with deterministic 
parameters. Most notable: polynomial chaos (PC) representation, e.g. 
for a single random variable 

( )∑
=

γ=
0l

ll VQP

* V is a random variable with a specified distribution 
* Ql are specified functions (orthogonal polynomials) 
* γl are deterministic parameters characterizing the random variable P 
 
Still at risk of violating physics unless implemented in V, Ql, and γl . 

UNCERTAINTY MODELING 
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(c) Maximum Entropy Approach 
 The joint probability density needed is not chosen, it is derived to 
maximize the statistical entropy 

subject to a series of physical and data matching constraints. 
physical constraints: matrix symmetry, positive property, boundedness 
   reflected in Ω. 
data matching constraints: mean, standard deviation, …. 
The Lagrange multipliers associated with the data matching constraints 
become the parameters of the distribution. 

( ) ( )∫
Ω

−= adapapS AA ln

UNCERTAINTY MODELING 
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AN EXAMPLE 
  

Aircraft response 
during missile launch Time (s)

A
cc

el
er

at
io

n 
Se

ns
or

 9
24

 (
g)

 

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4
-40

-30

-20

-10

0

10

20

30

40

50

Unc. Band
5th perc.
95th perc.
Flight Data
Mean Model

Time (s)

A
cc

el
er

at
io

n 
Se

ns
or

 9
24

 (
g)

 

 

0.1 0.15 0.2 0.25 0.3 0.35
-40

-30

-20

-10

0

10

20

30

40

50

Unc. Band
5th perc.
95th perc.
Flight Data
Mean Model

Time (s)

A
cc

el
er

at
io

n 
Se

ns
or

 8
17

 (
g)

 

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4
-15

-10

-5

0

5

10

15

20

25

30

Unc. Band
5th perc.
95th perc.
Flight Data
Mean Model

Time (s)

A
cc

el
er

at
io

n 
Se

ns
or

 8
17

 (
g)

 

 

0.1 0.15 0.2 0.25 0.3 0.35
-15

-10

-5

0

5

10

15

20

25

30

Unc. Band
5th perc.
95th perc.
Flight Data
Mean Model


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

