

Joints - Rolls-Royce Perspective

Dr John Schofield / Dr Jeff Green Joints Workshop April 2009.

©2009 Rolls-Royce plc

The information in this document is the property of Rolls-Royce plc and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Rolls-Royce plc.

This information is given in good faith based upon the latest information available to Rolls-Royce plc, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce plc or any of its subsidiary or associated companies.

Joints in Gas Turbine

Whole Engine Issues

- Whole engine uses a simplified model.
 - Need simplified respresentation of joints.
- Static loads (thrust / external loads / manoeuvres)
 - Are stiffness effects adequate for tip clearances and load distribution etc?
- **Dynamic Loads**
 - Engine/Wing Dynamics (0-10 Hz)
 - Frequency, damping, loads
 - Engine Rotordynamics (30-500 Hz)
 - Frequency, damping, loads
 - Extreme events (eg Fan Blade Off)

Damping

 Drive towards prediction of vibration amplitude for design and certification.

Effect of Non-linear Contact on Frequency

- Dampers can have a significant influence on resonant frequency.
 - Affect on resonant speed
 - Change in force amplitude

Campbell Diagram of HP Turbine

Effect of Joint on Modeshape => Stress

Contours of WP Stress At 2F resonance

Typical position of strain gauges In engine tests.

	Gauge Position	Gauge Sensitivity [Mpa/mm]	
		1T Mode	2F Mode
Undamped	1	579	779
	2	156	394
	3	731	354
Damped	1	348	876
	2	62	277
	3	705	265

Effect of Shroud Contact on Stator Response

- Uncertainty about inner shroud restraint => variability in effective stiffness
- Change of stiffness leads to change in amplitude and frequency.
- Difficulty interpreting measured results

Effect of Shroud Contact on Stator Modes

• It gets more complicated ...

Structural Integrity Assessment of Fan Dovetail Joints

- Assessment capabilities enhanced significantly in recent years
 - ➤ Steady and vibration stress predictions
 - > based on load extraction from 'coarse' FE model and analytical half-space model.
 - ➤ Converged stresses using detailed FE sub-sub modelling.
 - ➤ Robustness determined using short crack modelling techniques.
 - ➤ Integrity of root managed via use of surface coatings and treatments.

➤ More careful design possible.

Outstanding Issues?

- •Varying (patchy) friction, local wear, effect of local fillet, halfspace assumptions.
- •Longer lasting surface coatings have clear cost benefits.
- •EoB and near edge of bedding locations can be life limiting features.
- •Prediction of stresses near edge of bedding in vibration is problematic.

➤ Use of locked contact can be misleading

ABAQUS friction analysis shows separation of fillet and EoB stress.
Region close to EoB is now showing a much reduced stress.

Locked contact

vibration. Stress from fillet and

EOB and fillet

merge into one

stress peak

during

Summary of Needs

Damping

- Stability & Amplitude prediction (including non-linear effects)
- Friction Properties
- Validation of System Behaviour
- Interpretation of measured results (in engine)
- Rotor dynamics for stability

Frequency

- Effect of blade dampers is already under control
- Snubbers / Interlocks (mainly for fleet support)
- Whole engine at high frequencies accessories

Stress

- Edge of bedding stress including steady stress and vibration.
- Surface treatments, coatings
- Wear