Identification of Nonlinear Bolted Lap-Joint Parameters using Force-State Mapping

International Journal of Solids and Structures, 44 (2007) 8087-8108 Hassan Jalali, Hamed Ahmadian and John E Mottershead

• Joint modeling means identification of the joint operator both qualitatively and quantitatively.

• Static tangential loading leads to a softening stiffness effect:

$$F(x) = k_1 x + k_3 x^3 + k_5 x^5 + \dots$$

- Harmonic force at the bolted lap joint
- Energy dissipated vs. the force amplitude follows a power-law relationship.
- Experimental results show that $2 \le n \le 3$
- Linear viscous damping dependent upon maximum steady-state displacement amplitude

$$c(x_{\max}) = c_0 + c_1 x_{\max} + c_2 x_{\max}^2 + \cdots$$

Force-State Mapping

Equations in modal coordinates:

$$\ddot{q}(t) + \omega_{\perp}^2 q(t) + h(\dot{q},q) = Q(t)$$

$$\omega_{1}^{2} q(t) + h(q, \dot{q}) = Q(t) - \ddot{q}(t)$$

The joint parameters are identified by fitting a function on the surface .

Experiment

- Single-frequency excitation close to a natural frequency
- Measured low-level force and acceleration converted to a single modal coordinate using an updated FE model
- Other (higher) modes are eliminated
- Modal acceleration integrated analytically to obtain velocity and displacement

$$\ddot{q}(t) = \sum_{i}^{n} \left(A_{i} \sin(i\omega t) + B_{i} \cos(i\omega t) \right)$$

•Truncated after the fourth harmonic

3 Excitation levels

2 Preload conditions

Hysteresis Loops – Preload=120N

- Area and orientation approximately correct
- Possible underestimation of the cubic stiffening term

Perturbation Methods for the Estimation of Parameter Variability in Stochastic Model Updating

Mechanical Systems and Signal Processing 22 (2008) 1751-1773 Hamed Haddad Khodaparast, John E Mottershead and Michael I Friswell

The Perturbation Method

Stochastic model updating:

$$\overline{\boldsymbol{\theta}}_{j+1} + \Delta \boldsymbol{\theta}_{j+1} = \overline{\boldsymbol{\theta}}_j + \Delta \boldsymbol{\theta}_j + \left(\overline{\mathbf{T}}_j + \Delta \mathbf{T}_j\right) \left(\overline{\mathbf{z}}_m + \Delta \mathbf{z}_m - \overline{\mathbf{z}}_j - \Delta \mathbf{z}_j\right)$$

tels herveseen enitchesis vé selemes 0000

2nd Workshop on Joints Modelling – Dartington – 26-29 April 2009 The Perturbation Method

$$\mathbf{O}\left(\mathbf{\Delta}^{0}\right): \qquad \overline{\mathbf{\theta}}_{j+1} = \overline{\mathbf{\theta}}_{j} + \overline{\mathbf{T}}_{j}\left(\overline{\mathbf{z}}_{m} - \overline{\mathbf{z}}_{j}\right)$$

- the mean values of the updating parameters

$$\mathbf{O}(\mathbf{\Delta}^{1}): \qquad \mathbf{\Delta}\mathbf{\Theta}_{j+1} = \mathbf{\Delta}\mathbf{\Theta}_{j} + \overline{\mathbf{T}}_{j}\left(\mathbf{\Delta}\mathbf{z}_{m} - \mathbf{\Delta}\mathbf{z}_{j}\right) + \left(\left(\sum_{k=1}^{n} \frac{\partial \overline{\mathbf{T}}_{j}}{\partial z_{mk}} \mathbf{\Delta}z_{mk}\right) \left(\overline{\mathbf{z}}_{m} - \overline{\mathbf{z}}_{j}\right)\right)$$

- leads to an expression for the parameter covariances

Parameter Covariances

$$\operatorname{Cov}\left(\Delta\boldsymbol{\theta}_{j+1}, \Delta\boldsymbol{\theta}_{j+1}\right) = \operatorname{Cov}\left(\Delta\boldsymbol{\theta}_{j} + \mathbf{A}_{j} \Delta \mathbf{z}_{m} + \overline{\mathbf{T}}_{j}\left(\Delta \mathbf{z}_{m} - \Delta \mathbf{z}_{j}\right), \Delta\boldsymbol{\theta}_{j} + \mathbf{A}_{j} \Delta \mathbf{z}_{m} + \overline{\mathbf{T}}_{j}\left(\Delta \mathbf{z}_{m} - \Delta \mathbf{z}_{j}\right)\right)$$

$$= \operatorname{Cov}(\Delta \theta_{j}, \Delta \theta_{j}) + \operatorname{Cov}(\Delta \theta_{j}, \Delta \mathbf{z}_{m})\mathbf{A}_{j}^{T} + \operatorname{Cov}(\Delta \theta_{j}, \Delta \mathbf{z}_{m})\overline{\mathbf{T}}_{j}^{T} - \operatorname{Cov}(\Delta \theta_{j}, \Delta \mathbf{z}_{j})\overline{\mathbf{T}}_{j}^{T} + \left(\operatorname{Cov}(\Delta \theta_{j}, \Delta \mathbf{z}_{m})\mathbf{A}_{j}^{T}\right)^{T} + \mathbf{A}_{j}\operatorname{Cov}(\Delta \mathbf{z}_{m}, \Delta \mathbf{z}_{m})\mathbf{A}_{j}^{T} + \mathbf{A}_{j}\operatorname{Cov}(\Delta \mathbf{z}_{m}, \Delta \mathbf{z}_{m})\overline{\mathbf{T}}_{j}^{T} - \mathbf{A}_{j}\operatorname{Cov}(\Delta \mathbf{z}_{m}, \Delta \mathbf{z}_{j})\overline{\mathbf{T}}_{j}^{T} + \left(\operatorname{Cov}(\Delta \theta_{j}, \Delta \mathbf{z}_{m})\overline{\mathbf{T}}_{j}^{T}\right)^{T} + \left(\mathbf{A}_{j}\operatorname{Cov}(\Delta \mathbf{z}_{m}, \Delta \mathbf{z}_{m})\overline{\mathbf{T}}_{j}^{T}\right)^{T} + \overline{\mathbf{T}}_{j}\operatorname{Cov}(\Delta \mathbf{z}_{m}, \Delta \mathbf{z}_{m})\overline{\mathbf{T}}_{j}^{T} - \overline{\mathbf{T}}_{j}\operatorname{Cov}(\Delta \mathbf{z}_{m}, \Delta \mathbf{z}_{j})\overline{\mathbf{T}}_{j}^{T} - \left(\operatorname{Cov}(\Delta \theta_{j}, \Delta \mathbf{z}_{j})\overline{\mathbf{T}}_{j}^{T}\right)^{T} - \left(\mathbf{A}_{j}\operatorname{Cov}(\Delta \mathbf{z}_{m}, \Delta \mathbf{z}_{j})\overline{\mathbf{T}}_{j}^{T}\right)^{T} - \left(\overline{\mathbf{T}}_{j}\operatorname{Cov}(\Delta \mathbf{z}_{m}, \Delta \mathbf{z}_{j})\overline{\mathbf{T}}_{j}^{T}\right)^{T} + \overline{\mathbf{T}}_{j}\operatorname{Cov}(\Delta \mathbf{z}_{j}, \Delta \mathbf{z}_{j})\overline{\mathbf{T}}_{j}^{T}$$

$$\mathbf{A} = \begin{bmatrix} \frac{\partial \overline{\mathbf{T}}_{j}}{\partial z_{m1}} \left(\overline{\mathbf{z}}_{m} - \overline{\mathbf{z}}_{j} \right) & \frac{\partial \overline{\mathbf{T}}_{j}}{\partial z_{m2}} \left(\overline{\mathbf{z}}_{m} - \overline{\mathbf{z}}_{j} \right) & \cdots & \frac{\partial \overline{\mathbf{T}}_{j}}{\partial z_{mn}} \left(\overline{\mathbf{z}}_{m} - \overline{\mathbf{z}}_{j} \right) \end{bmatrix} \qquad \overline{\mathbf{T}}_{j} = \left(\overline{\mathbf{S}}_{j}^{T} \mathbf{W}_{1} \overline{\mathbf{S}}_{j} + \mathbf{W}_{2} \right)^{-1} \overline{\mathbf{S}}_{j}^{T} \mathbf{W}_{1}$$

 $Cov(\Delta \theta_j, \Delta z_j) \text{and } Cov(\Delta z_j, \Delta z_j)$ are determined by forward propagation

$$Cov(\Delta \boldsymbol{\theta}_{j+1}, \Delta \mathbf{z}_{m}) = Cov(\Delta \boldsymbol{\theta}_{j} + \mathbf{A}_{j}\Delta \mathbf{z}_{m} + \overline{\mathbf{T}}_{j}(\Delta \mathbf{z}_{m} - \Delta \mathbf{z}_{j}), \Delta \mathbf{z}_{m})$$

=
$$Cov(\Delta \boldsymbol{\theta}_{j}, \Delta \mathbf{z}_{m}) + (\mathbf{A}_{j} + \overline{\mathbf{T}}_{j})Cov(\Delta \mathbf{z}_{m}, \Delta \mathbf{z}_{m}) - \overline{\mathbf{T}}_{j}Cov(\Delta \mathbf{z}_{j}, \Delta \mathbf{z}_{m})$$
$$Cov(\Delta \mathbf{z}_{j}, \Delta \mathbf{z}_{m}) = \overline{\mathbf{S}}_{j}Cov(\Delta \boldsymbol{\theta}_{j}, \Delta \mathbf{z}_{m})$$

$$\mathbf{A}_{j+1} = \left[\frac{\partial \overline{\mathbf{T}}_{j+1}}{\partial z_{m1}} \middle|_{z_{m1} = \overline{z}_{m1}} (\overline{\mathbf{z}}_{m} - \overline{\mathbf{z}}_{j+1}) \quad \frac{\partial \overline{\mathbf{T}}_{j+1}}{\partial z_{m2}} \middle|_{z_{m2} = \overline{z}_{m2}} (\overline{\mathbf{z}}_{m} - \overline{\mathbf{z}}_{j+1}) \quad \cdots \quad \frac{\partial \overline{\mathbf{T}}_{j+1}}{\partial z_{mn}} \middle|_{z_{mn} = \overline{z}_{mn}} (\overline{\mathbf{z}}_{m} - \overline{\mathbf{z}}_{j+1}) \right]$$
$$= \frac{\partial \overline{\mathbf{T}}_{j+1}}{\partial z_{mk}} \middle|_{z_{mk} = \overline{z}_{mk}} = \sum_{i=1}^{m} \frac{\partial \overline{\mathbf{T}}_{j+1}}{\partial \overline{\theta}_{(j+1),i}} \frac{\partial \overline{\theta}_{(j+1),i}}{\partial z_{mk}} \middle|_{z_{mk} = \overline{z}_{mk}}; \quad k = 1, 2, \dots, n$$
$$= \frac{\partial \overline{\mathbf{T}}_{j+1}}{\partial \theta_{(j+1),i}} = (\overline{\mathbf{S}}_{j+1}^{T} \mathbf{W}_{1} \overline{\mathbf{S}}_{j+1} + \mathbf{W}_{2})^{-1} \frac{\partial \overline{\mathbf{S}}_{j+1}^{T}}{\partial \theta_{(j+1),i}} \mathbf{W}_{1}$$
$$= (\overline{\mathbf{S}}_{j+1}^{T} \mathbf{W}_{1} \overline{\mathbf{S}}_{j+1} + \mathbf{W}_{2})^{-1} \left(\frac{\partial \overline{\mathbf{S}}_{j+1}^{T}}{\partial \theta_{(j+1),i}} \mathbf{W}_{1} \overline{\mathbf{S}}_{j+1} + \overline{\mathbf{S}}_{j+1}^{T} \mathbf{W}_{1} \frac{\partial \overline{\mathbf{S}}_{j+1}}{\partial \overline{\theta}_{(j+1),i}} \right) (\overline{\mathbf{S}}_{j+1}^{T} \mathbf{W}_{1} \overline{\mathbf{S}}_{j+1} + \mathbf{W}_{2})^{-1} \overline{\mathbf{S}}_{j+1}^{T} \mathbf{W}_{1}$$

Simplification

If the measurements and parameters are assumed to be uncorrelated then, $Cov(\Delta \mathbf{z}_m, \Delta \mathbf{\theta}_j)=0$, $Cov(\Delta \mathbf{z}_m, \Delta \mathbf{z}_j)=0$

The parameter covariances become;

$$\operatorname{Cov}\left(\Delta\boldsymbol{\theta}_{j+1}, \Delta\boldsymbol{\theta}_{j+1}\right) = \operatorname{Cov}\left(\Delta\boldsymbol{\theta}_{j}, \Delta\boldsymbol{\theta}_{j}\right) - \operatorname{Cov}\left(\Delta\boldsymbol{\theta}_{j}, \Delta\boldsymbol{z}_{j}\right) \overline{\mathbf{T}}_{j}^{T} + \overline{\mathbf{T}}_{j} \operatorname{Cov}\left(\Delta\boldsymbol{z}_{m}, \Delta\boldsymbol{z}_{m}\right) \overline{\mathbf{T}}_{j}^{T} - \overline{\mathbf{T}}_{j} \operatorname{Cov}\left(\Delta\boldsymbol{z}_{j}, \Delta\boldsymbol{\theta}_{j}\right) + \overline{\mathbf{T}}_{j} \operatorname{Cov}\left(\Delta\boldsymbol{z}_{j}, \Delta\boldsymbol{z}_{j}\right) \overline{\mathbf{T}}_{j}^{T}$$

No requirement for the second-order sensitivities.

Known deterministic parameters

 $m_i = 1.0 \text{ kg} \quad (i = 1, 2, 3)$ $k_i = 1.0 \text{ N/m} \quad (i = 3, 4)$ $k_6 = 3.0 \text{ N/m}$

Unknown Gaussian random variables with mean values and standard deviations given by

$$\mu_{k_1} = 1.0 \text{ N/m}$$
 , $\mu_{k_2} = 1.0 \text{ N/m}$, $\mu_{k_5} = 1.0 \text{ N/m}$

$$\sigma_{k1} = 0.20$$
 N/m, $\sigma_{k2} = 0.20$ N/m, $\sigma_{k5} = 0.20$ N/m

The measured data are obtained by using Monte Carlo simulation. The initial estimates of the unknown random parameters are,

Convergence of natural frequency distributions

Parameters	Initial	% Error				
	% Error	(1)	(2)	(3)	(4)	(5)
$\overline{k_1}$	100	1.29	1.43	1.22	1.88	16.40
\overline{k}_2	100	-2.45	-2.70	-2.68	-2.62	36.56
\overline{k}_{5}	100	0.56	0.61	0.61	2.13	58.58
std $(\overline{k_1})$	50	0.14	0.45	1.50	-89.88	-14.82
std (\overline{k}_2)	50	-0.68	1.96	0.75	-89.96	-13.07
std $(\overline{k_5})$	50	1.22	0.62	0.34	-90.07	-59.87

Converged Distributions – 10000 Samples

Methods:

- 1.Simplified perturbation method
- 2.Full perturbation method
- 3. Perturbation method by Hua
- 4. Minimum variance Collins et al.
- 5. Minimum variance Friswell

Experimental Case Study – Plate Thickness Variability

Arrangement of accelerometers (A, B, C, D) and driving point (F)

Plate thickness distribution

Measurement Distribution from 10 plates

	Mode Number											
Plate No.		1		2		3		4		5		
1	11	19.774	1	284.283	3	31.970	58	9.404	656	5.359		
2	12	21.615		291.922	3	37.186	60	5.160	665	5.854		
3	12	23.156		291.440	3	40.184	60	2.603	673	.357		
4	12	28.048		298.163	3	55.210	62	0.139	700).798		
5	12	28.533		303.809	3	57.110	63	0.809	704	.505		
6	12	28.596		301.010	3	61.488	63	5.533	713	.207		
7	12	29.796		311.726	3	61.114	64	6.765	712	2.792		
8	13	35.058		315.393	3	74.368	65	3.584	738	3.395		
9	13	34.478		312.215	3	74.406	64	9.130	737	.256		
10	13	38.141		321.812	3	82.932	66	7.203	755	5.189		
Mean	12	28.720		303.177	3	57.597	63	0.033	705	5.771		
STD	(5.011	12	2.032	1	7.048	25	5.235	32.	.854		
			Mode Number									
		Plate N	0.	6		7	-	8		9		10
		1		932.576	5	1091.6	03	1343	.097	1628.	879	1825.215
		2		953.666	5	1106.8	61	1372	.890	1650.	395	1860.225
		3		955.515	5	1119.4	45	1376	.298	1669.	899	1868.071
		4		980.403	3	1165.1	77	1414	.181	1736.	714	1924.260
		5		995.188	3	1169.6	60	1433	.020	1743.	750	1946.155
		6		999.248	3	1184.4	55	1440	.134	1765.4	415	1957.581
		7		1019.05	2	1184.6	80	1467	.366	1766.	361	1987.556
		8		1031.83	7	1225.3	75	1487	.512	1825.	602	2021.640
		9		1023.22	9	1224.4	20	1479	.268	1824.	121	2013.354
ITY OF		10		1053.97	4	1253.6	10	1519	.011	1866.	665	2031.377
POOL		Mean		994.469)	1172.5	21	1433	.278	1747.	780	1943.543
		STD		38.877		53.84	0	56.7	71	79.2	32	72.908

Parameterisation into Four Regions

Initial parameters

$$\bar{t}_i = 4 \text{ mm}, \text{ std}(t_i) = 0.8 \text{ mm}, i = 1,...,4.$$

Convergence of Parameter Estimates

Measured, Initial and Updated Mean and Standard Deviation of Parameters

	Measured	Initial	Updated	Initial FE	Updated FE
	Parameters	Parameters	Parameters	% error	% error
mm					
$\bar{\mathbf{t}}_1$	3.978	4.000	4.140	0.553	4.072
$\operatorname{std}(t_1)$	0.159	0.8	0.129	403.145	-18.868
\bar{t}_2	3.969	4.000	4.002	0.781	0.831
$\operatorname{std}(t_2)$	0.161	0.8	0.204	396.894	26.708
\overline{t}_3	3.982	4.000	3.986	0.452	0.100
$\operatorname{std}(t_3)$	0.164	0.8	0.166	387.805	1.219
\overline{t}_4	3.981	4.000	3.820	0.477	-4.044
$\operatorname{std}(t_4)$	0.167	0.8	0.206	379.042	23.353

	Measured (Hz)	Initial FE	Updated FE	Initial FE	Updated FE
		(Hz)	(Hz)	% error	% error
Mode (1)	128.720	128.321	128.111	-0.310	-0.473
Mode (2)	303.177	307.147	306.339	1.310	1.043
Mode (3)	357.597	356.645	355.185	-0.266	-0.675
Mode (4)	630.033	637.433	633.188	1.175	0.501
Mode (5)	705.771	705.467	701.777	-0.043	-0.566
Mode (6)	994.469	1002.229	996.865	0.780	0.241

Measured, initial and updated mean natural frequencies

Measured, initial and updated std of natural frequencies

	Measured (Hz)	Initial FE (Hz)	Updated FE (Hz)	Initial FE % error	Updated FE % error
Mode (1)	6.011	20.943	5.750	248.411	-4.342
Mode (2)	12.032	47.385	13.777	293.825	14.503
Mode (3)	17.048	39.231	15.180	130.121	-10.957
Mode (4)	25.235	65.655	26.797	160.175	6.190
Mode (5)	32.854	71.379	28.644	117.261	-12.814
Mode (6)	38.877	108.445	40.166	178.944	3.316

