Analysis of nonlinear vibrations in jointed gas-turbine structures

E.P. Petrov Centre of Vibration Engineering Mechanical Engineering Department

Imperial College London Contact interfaces in gas-turbine structures

The challenge is to analyse fast and accurately nonlinear dynamics of assembled largescale models of structures with contact interfaces

Page 2 of 21

2nd Workshop on Joints Modelling , Dartington, UK, 27 April 2009

A blade containment test: windmilling

2nd Workshop on Joints Modelling , Dartington, UK, 27 April 2009

Methodology for predictive analysis of dynamic problems in gas-turbine structures

Page 4 of 21

2nd Workshop on Joints Modelling , Dartington, UK, 27 April 2009

Imperial College London Major components of the methodology developed at Imperial College

2nd Workshop on Joints Modelling , Dartington, UK, 27 April 2009

Major types of contact interactions modelled

Friction contact: 3D motion with variable normal load

 I_{t1}

 $\mathbf{1}_{t2}$

Generalised nonlinear spring element: any polynomial nonlinearity

Bilinear spring and gap

E.Petrov

2nd Workshop on Joints Modelling , Dartington, UK, 27 April 2009

Breakthrough in the analysis of periodic steady-state vibrations: analytically derived contact interface elements

Expressions are obtained in analytical form ⇒ EXACT + extremely FAST calculations

Page 7 of 21

2nd Workshop on Joints Modelling , Dartington, UK, 27 April 2009

Description of contact interface interactions by the contact elements

Page 8 of 21

Analysis of forced response: blade root damping

Page 9 of 21

2nd Workshop on Joints Modelling , Dartington, UK, 27 April 2009

A bladed disc with u/p dampers

New friction models

Capabilities of new models:

1) arbitrary 3D motion, normal load variation including contact-separation

- 2) accounting for stiffness due to contact surface roughness
- 3) anisotropy and inhomogeneity of the friction parameters over contact area 4) time variation of friction parameters (due to variation in temperature, wear, lubrication, etc.)

Examples of friction force modelling by new models

Trajectory and friction force vector (different anisotropy properties)

Page 12 of 21

2nd Workshop on Joints Modelling , Dartington, UK, 27 April 2009

Advanced tools for effective design

Direct parametric analysis

Conventional forced response analysis:

Frequency response is calculated to obtain only resonance peak frequency and response level. Many analyses are needed for different parameter values

Direct parametric analysis:

The resonance peak frequency and response level are calculated directly as functions of design parameters

$$\begin{aligned} & \left[\begin{array}{c} \omega^{res} \left(\lambda \right) = \omega^{res} \left(\boldsymbol{b}(\lambda) \right) \\ & a^{res} \left(\lambda \right) = a^{res} \left(\boldsymbol{b}(\lambda) \right) \end{aligned} \right] \end{aligned}$$

Direct parametric analysis: blade root damping

Page 15 of 21

2nd Workshop on Joints Modelling , Dartington, UK, 27 April 2009

Resonance peak amplitude and frequency: dependency on the interference values at the contact interfaces

2nd Workshop on Joints Modelling , Dartington, UK, 27 April 2009

Sensitivity analysis for forced response

Forced response:

 $\frac{\partial^2 x(\omega)}{\partial \lambda^2}$

 λ = clearance, interference, friction coefficient, contact stiffness, mass of u/p damper, or other design parameters and their combinations

Page 17 of 21

Example: forced response sensitivity to contact interface parameters for a shrouded bladed disc

speed of calculations and high accuracy

Page 18 of 21

2nd Workshop on Joints Modelling , Dartington, UK, 27 April 2009

Imperial College London Analysis of effects of design parameters uncertainty and variability on forced response

Uncertainty analysis of forced response for given design parameter

Stochastic analysis for forced response: when stochastic characteristics of parameters are available

2nd Workshop on Joints Modelling , Dartington, UK, 27 April 2009

Example: analysis for ranges of uncertainty of the forced response

2nd Workshop on Joints Modelling , Dartington, UK, 27 April 2009

Challenges

- 1) Validated constitutive equations describing forces at friction contacts (friction laws):
- for contacts in micro-slip, with small relative motion (bolted joints, flanges, blade-disc joints)
- for large high-energy rubbing motions and impacts (e.g. windmilling)
- for new materials (e.g. composites, rubber, polymers)
- 2) Friction contact parameters (e.g. friction and contact stiffness coefficients):
- prediction
- allowing for dependence and effects of operating conditions: temperature, contact stresses, wear, oxidation, etc.