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Reduced-order Modeling of Interfaces

Abstract

Modeling mechanical joints in an accurate and computationally
efficient manner is of great importance in the analysis of structural
systems, which can be composed of a large number of connected
components. This work presents an interface model that can be
decomposed into a series-series Iwan model together with an
elastic chain, subject to interfacial shear loads. The model is
developed and two formulations of the model are considered.
Results are then presented as the interface is subject to harmonic
loading of varying amplitude. The models presented are able to
qualitatively reproduce experimentally observed dissipation
scalings. Finally, the interface models are embedded within a
larger structural system to illustrate there effectiveness in
capturing the structural damping induced by mechanical joints.
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Introduction

◮ Friction damping in mechanical joints and interfaces contribute a
significant fraction of the dissipation in complex engineering
structures;

What do we need? Better Physics, Better Computations
◮ Predictive structural models require an accurate representation

of the behavior at and near the interface;
◮ Small length scales of microslip lead to prohibitivly large

computational times

Existing approach:
◮ incorporate the observed dissipation into a linear joint model with

effective mass, damping and stiffness parameters

But the tuning is tied to the response of a particular test—the joint
model is no longer predictive.
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Introduction Microslip

◮ Menq et al. (1986a,b) develop a continuum model representing
the microslip that arises in frictional dampers;

◮ Segalman (2002) has developed a four parameter Iwan model
that is capable of reproducing the qualitative properties of the
joint dynamics;

◮ Song et al. (2004, 2002) have developed an adjusted Iwan beam
element (AIBE) based on a parallel-series Iwan model that can
be naturally incorporated into an existing finite element
framework. With the proper identification of the model
parameters, the AIBE can be used to capture experimentally
observed profiles for the response of jointed structures.
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Introduction Microslip

As the loading evolves, multiple slip intervals are developed. . .

slip interfaces initiate at force
reversals and move into the
material from the free end
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A Two-sided Interface Model
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◮ each element is assumed to be identical, with a mass m, and a
stiffness k respectively;

◮ fi and gi , i = 1, . . . , n − 1 represent the shear loading applied to
the masses;

◮ f0 and g0 (fn and gn) describe the forces acting on the left (right)
edge of the interface

◮ each interface is described through the frictional force σi .
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A Two-sided Interface Model Decomposition
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From the the symmetry of the system, the following coordinates can
be identified

wi =
xi + yi

2
, zi =

xi − yi

2
, pi =

ui + vi

2
, qi =

ui − vi

2
,
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A Two-sided Interface Model Elastic Component

The equations on wi can be reduced to

m ẅ1 +
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Equivalent to the response of an elastic chain
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A Two-sided Interface Model Dissipative Component

The dissipation in the system arises solely from the equations on zi

m z̈i + k
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=
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with
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Model Reduction

If the overall static stiffness and total mass of the chain are held fixed
as Keq and Meq respectively, then the inter-element stiffness and
mass can be represented as

k = (n − 1) Keq, m =
Meq

2 (n − 1)
.

If the lowest characteristic frequency of the interface scales as
ωc =

√

Keq/Meq, then the largest characteristic frequency scales as

ωmax =

√

2 k
m

= 2 (n − 1)

√

Keq

Meq
= 2 (n − 1)ωc.
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Model Reduction Order Reduction

Approximate the response of the elastic chain with a Galerkin method

◮ keep only the linear vibrational modes whose characteristic times
are comparable to the timescales of the surrounding structure;

◮ depends on the structure as well as the forcing—longer
timescales require, in general, fewer modes.

Retaining only the lowest s linear modes for the elastic chain,
denoted as φi , i = 1, . . . , s, the response of this component is then
given as

wi(t) =
s

∑

j=1

Wj(t) [φj ]i ,

where

M̂ Ẅ + K̂ W = f̂ (t),

[M̂]jk = φT
j Mφk , [K̂ ]jk = φT

j Kφk , [f̂ (t)]j = φT
j f (t).
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Model Reduction Dissipative Chain

In the series-series Iwan chain, the dissipation can be accurately
captured by neglecting the mass in each Iwan element—effectively
solving for the quasistatic response (Kim and Kwak, 1996; Berger
et al., 2000; Cocu et al., 1996)
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(

f1 − g1

2

)

+ 2 σ1,

k (−qi−1 + 2 qi − qi+1) =

(

fi−1 − gi−1

2

)

+

(

fi − gi

2

)

+ 2 σi i = 2, . .

k (−qn−1 + qn) = (fn − gn) +
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Reduced-Order Interface Model

Direct time-dependent loading

f0(t) = 0,
g0(t) = −F0 sin(ω t),

fn(t) = F0 sin(ω t),
gn(t) = 0.

The relative displacement across the interface

∆1 = un − v1 =
(

wn−1 − w1

)

+
(

qn + q1

)

+

[

(fn + gn) − (f0 + g0)

2 k

]

,

The mass and stiffness are chosen as

k = (n − 1), m =
1

2 (n − 1)
,

so that the total mass and overall equivalent stiffness for the interface
model are unity, that Keq = 1 and Meq = 1.
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Reduced-Order Interface Model
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Structural Response

Incorporate the interface model into an elastic beam

Interface Element

The ℓth mass is replaced by an Iwan interface element (Song et al.,
2004).
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Structural Response

Near the interface the equations governing aℓ−1 and aℓ+1 become

M
r

äℓ−1 + K r (aℓ−1 − aℓ−2) = −g0(t),

M
r

äℓ+1 + K r (−aℓ+2 + aℓ+1) = −fn(t),

where g0(t) and fn(t) represent the coupling between the Iwan
interface element and the surrounding chain. These forces are
described as

g0(t) = 2 K r (aℓ−1 − v1) =
2 K r

(

1 + 1
n−1

)

(

aℓ−1 − (w1 − q1)
)

,

fn(t) = 2 K r (aℓ+1 − un) =
2 K r

(

1 + 1
n−1

)

(

aℓ−1 − (w1 + qn)
)

,

and f0(t) = gn(t) ≡ 0. The quantities w1, q1, wn−1, and qn represent
the elastic and dissipative coordinates used within the interface
model described above, and are valid when considering either the
conventional, or the massless Iwan interface.
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Structural Response Transient Response
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Structural Response Transient Response
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Structural Response Transient Response

Exponential Decay Rate σ(ti) =
ln(Ai+1) − ln(Ai−1)

ti+1 − ti−1
.
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Structural Response Computational Time
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Ongoing Work

◮ Incorporate this model into a finite element formulation;
◮ Determine the appropriate loadings on this interface model.
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