

Imperial College London

Progress Since Washington Meeting

Challenge 1 and the PAMFJP project

David Nowell University of Oxford, UK

- Previous Joints Workshops
 - New Orleans, 2001
 - West Palm Beach, 2002
 - Washington (Arlington, Virginia), 2006
- Report from Arlington meeting contained 3 'challenges'
 - 1. Experimental Measurement of Joint Properties
 - 2. Interface Physics
 - 3. Multi-scale modelling
- Formal progress on these challenges at a national/international level has been limited
 - But individual projects are taking place

- Standardisation of experimental techniques
 - Round-robin exercise to measure frictional hysteresis loops for a well-characterised material pair

Imperial College

London

- 'Top-down' Modelling
 - Draw on results of above to produce a 'top-down' model of the contact, based on an interface constitutive law
 - Use this to predict hysteresis loop in a different configuration (e.g. different roughness/different material pair/different geometry)

- Predictive Approach to Modelling Frictional Joint Performance
- UK project, Funded by EPSRC
 - Collaborators: Imperial College London and University of Oxford
 - 4 years: October 2007 Oct 2011
 - Research Assistant and Research Student at each institution.
 - Total Funding £0.75 million
- Industrial collaborators Rolls-Royce plc and AWE

Imperial College London

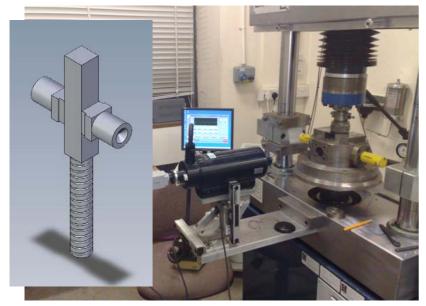
Staff

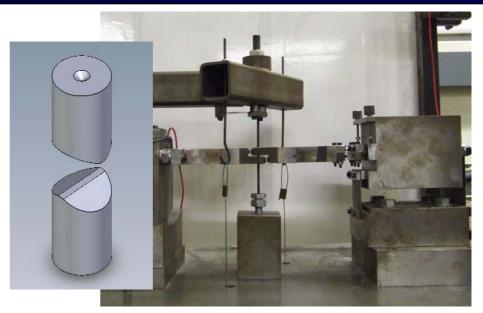
Academic Staff

 Prof David Ewins, Dr Evgeny Petrov, Vibrations – Imperial College

Imperial College

- Dr Andy Olver, Dr Daniele Dini, Tribology Imperial College
- Prof David Nowell, Prof David Hills, Solid Mechanics, Oxford
- Research staff and students
 - Simon Medina, Daniel Propentner, Christoph Scwingshackl, Imperial
 - Mehmet Kartal, Daniel Mulvihill, Oxford




- Carry out independent hysteresis loop measurements on IC and Oxford equipment
 - Correlate results for friction coefficient and contact stiffness
- Development of physical understanding
 - Including measurements using SLIM apparatus
- Numerical modelling
 - Asperity level
 - Multi-asperity rough contact
- Validation
 - Prediction of response in different configuration

Oxford and Imperial rigs

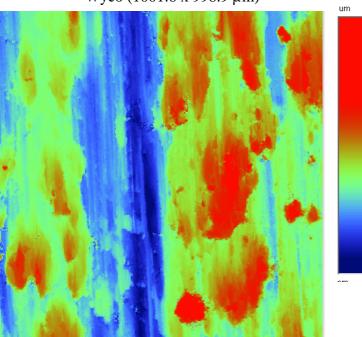
- 80 mm² flat and rounded contact
- 1Hz Frequency
- 0.6mm sliding distance
- Displacement measurement by remote LVDT or digital image correlation

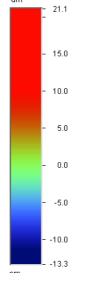
Imperial College

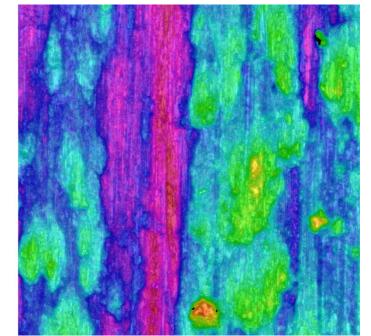
London

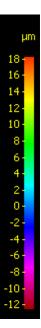
- 1 mm² flat on flat contact
- ~100Hz Frequency
- 30µm sliding distance
- Displacement measurement integration of LDV measurements

- Three material pairs chosen:
 - Ti6/4 'smooth' ground
 - Ti6/4 'rough' ground
 - Udimet 720 'smooth ground
- Specimens manufactured at Oxford to give 'same' surface finish for both specimen geometries
- Roughness of untested specimens measured at Imperial (Wyco) and Oxford (Alicona)



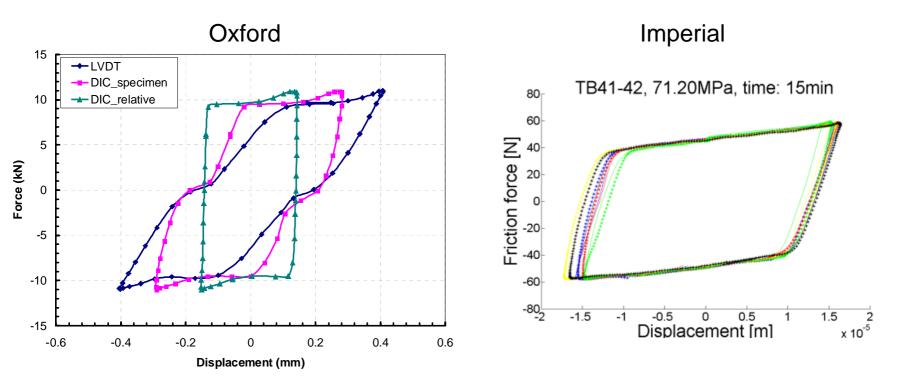

Roughness measurements Alicona-Wyco Comparison


Titanium (TB58)	Wyco	Alicona
S _a	3.60 µm	3.56 µm
S _q	4.51 µm	4.47 µm
S _q S _z	29.55 µm	30.76 µm
S _{ku}	2.91 µm	2.9 µm
S _{sk}	0.10 µm	0.073 µm


Wyco (1001.6 x 998.9 µm)

Alicona (1001.6 x 998.9 µm)

	S _a	S _q	S _P	S _v	Sz	S _{10Z}	S _{sk}	S _{ku}	S _k	S _{pk}	S _{vk}
Titanium (Smooth) ALICONA	1.19	1.49	7.80	7.06	14.87	13.06	-0.012	3.04	3.76	1.34	1.43
Titanium (Smooth) WYCO	1.04	1.27			14.39						
Nickel ALICONA	1.54	1.88	8.92	7.88	16.79	15.46	0.038	3.07	4.68	1.72	1.76
Nickel WYCO	1.36	1.72			26.27						
Titanium (Rough) ALICONA	2.13	2.74	12.74	10.58	22.79	20.42	0.54	3.49	6.15	3.61	2.21
Titanium (Rough) WYCO	2.53	3.11			35.89						


•Wyco measurements were taken as average values of two perpendicular thin strips 574 x 6999 μ m

*All values in micrometers (µm)

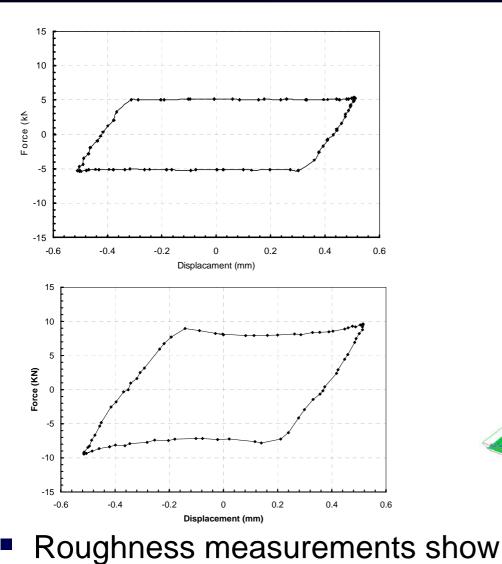
Hysteresis loop measurements

Imperial College London

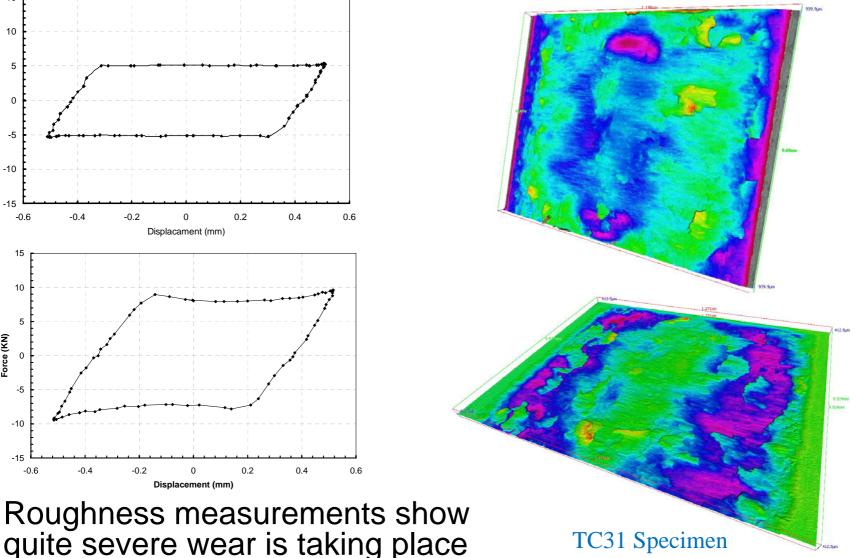
- Both rigs show some change with time
 - Significant wear
- Similar features observed
 - E.g. rise in force during sliding phase
- Results obtained allow comparison of friction coefficient and stiffness values
 - Some issues still to be addressed (definition of μ , time, normalisation of stiffness

Contact stiffness (N/m/mm of contact area)

	Ti Smooth	Ti Rough	Nickel
Imperial	1.8 x 10 ⁷	2.6 x 10 ⁷	4.8 x 10 ⁷
Oxford	Not yet measured with DIC	3.4 x 10 ⁷	2.0 x 10 ⁷

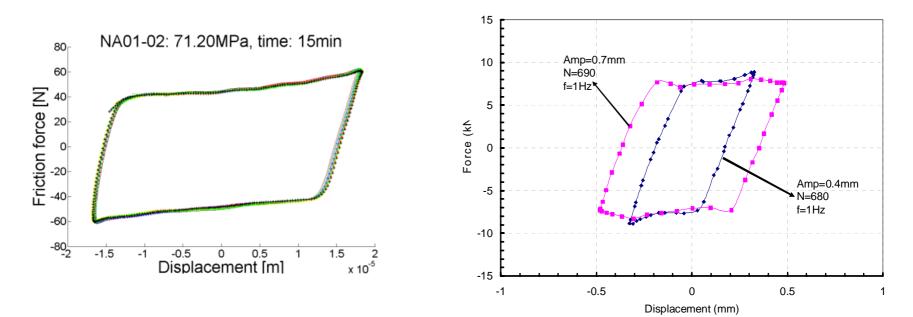

Imperial College

Friction coefficient (after approx 3m sliding distance)


	Ti Smooth	Ti Rough	Nickel
Imperial	0.67	0.67	0.67
Oxford	0.61	0.71	0.69

Imperial College London Variation of friction during test

TB55 Pad

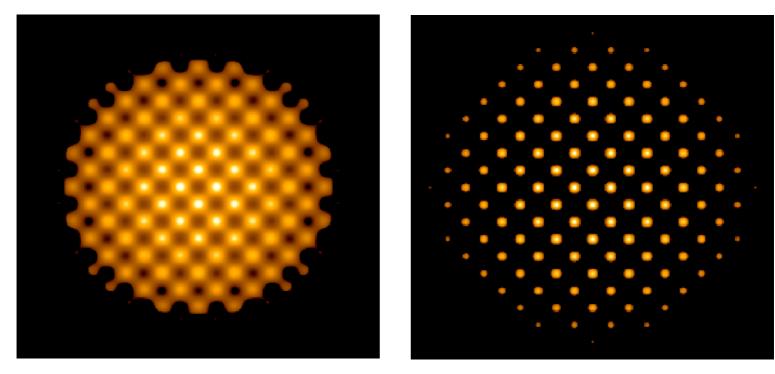

Non-uniform friction during sliding

 Particularly in worn state, friction increases during sliding part of cycle

Imperial College

London

- Seems to be associated with contact registration (macroscopic or microscopic?)
- We have also discussed velocity dependent friction
- Some variable amplitude tests carried out
- Further work to be done



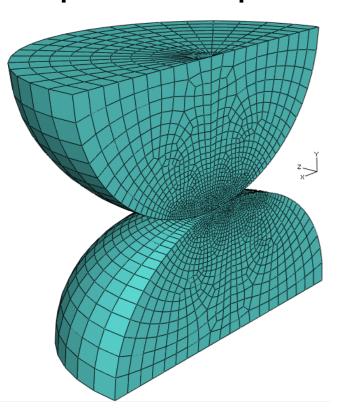
Modelling

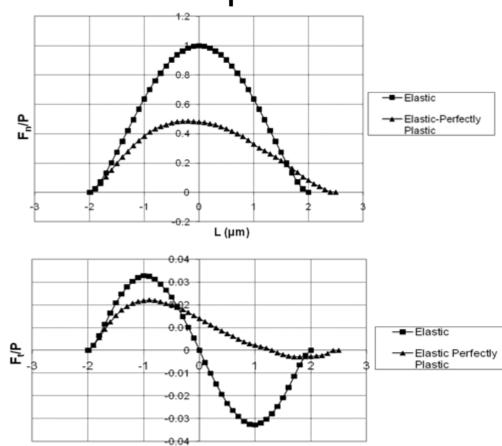
- Simon Medina (IC) has developed model for elastic contact of rough surfaces using Venner/Lubrecht approach
- Coulomb friction can be included using Ciavarella method for partial slip

Amplitude 0.05 um

Amplitude 0.75 um

Partial slip modelling




	Currently possible	Further development req.d
Tractions	Normal contact for any profile with/without adhesion and simplified plasticity [composite surface assumption]	Prediction of friction coefficient based on generalised measurable data
Slip	Tangential loading (incl. sequences) for non- adhesive contacts Prediction of friction	Full plasticity solution Accounting for wear, and wear particles within contact
augusta 10 5 0 10 5 0 10 10 10 10 10 10 10 10 10	loops for "suitable" contact geometries based on measured friction coefficient	Prediction of friction loops for contacts such as Imperial and Oxford test rigs
0 0.5 1 1.5 2 2.5 Tangential stiffness R _q (μm)		Tangential loading with adhesion

Daniel Mulvihill (Oxford) has undertaken FE modelling of interaction of a pair of elastic-

plastic asperites

 $L(\mu m)$

Imperial College London

- Challenge 1 from Arlington Meeting has not yet been addressed internationally in a co-ordinated way
- However, it has been used nationally as the basis for collaborative projects
- An example of this is the Oxford/Imperial PAMFJP project
- Significant progress made in understanding and correlating experimental measurements on different rigs
- Work still ongoing in modelling at a single asperity or multi-asperity level
- Wear is more significant than was originally thought when defining the project