Integrated modelling approaches for tribological interfaces

DJE interpretation: New ideas and developments for improved modelling

Daniele Dini (d.dini@imperial.ac.uk) Tribology Group Department of Mechanical Engineering, Exhibition Road, SW7 2AZ, London

SANDIA-NSF-AWE Workshop on Joints Mechanics, Dartington April 2009

London Background 1 – The continuum side

 Frictional hysteresis loops recorded for reciprocating sliding of representative samples of material

Imperial College

- Friction coefficient and tangential contact stiffness obtained from hysteresis trace
- Difficult to predict friction, but...
 - Are results scalable?
 - Can initial curvature (stiffness due to partial slip) be predicted?
 - Can energy dissipation be predicted?
- Focusing on surface roughness effects
- Interested primarily in energy dissipation and tangential contact stiffness

Background 1 – The continuum side

- Frictional hysteresis loops recorded for reciprocating sliding of representative samples of material
- Friction coefficient and tangential contact stiffness obtained from hysteresis trace
- Difficult to predict friction, but...
 - Are results scalable?
 - Can initial curvature (stiffness due to partial slip) be predicted?
 - Can energy dissipation be predicted?

• What about history and evolution ???

- Focusing on surface roughness effects
- Interested primarily in energy dissipation and tangential contact stiffness

Ciavarella et al., JMPS 2006 Petrov et al., ASME 2004

Effect of roughness (Method)

Rough surfaces contact analysis

- Uses either real roughness from optical profilometry or randomised surfaces
- Using Multilevel Multi-integration method (Bradt & Lubrecht; Venner & Lubrecht)
- Coarser grids allow long range influences to pass through Jacobi relaxation process faster, and faster solution
- Good for memory usage; critical for future work on experimental comparison with real surfaces requiring very large grid sizes
- Ciavarella / Jäger method for obtaining partial slip tractions
- Limitations: linear elastic, half-space and Coulomb's friction

"Rough" half-space

Rough surface generation

- Rough surfaces generated using moving average method to control correlation length
- Template surfaces generated
- Rescaled to give different RMS
- Translated using Johnson curves to give different skewness and kurtosis
- Ensures asperity location remains same and reduces scatter

Rough surface generation

- Rough surfaces generated using moving average method to control correlation length
- Template surfaces generated
- Rescaled to give different RMS
- Translated using Johnson curves to give different skewness and kurtosis
- Ensures asperity location remains same and reduces scatter

Rough surface generation

- Rough surfaces generated using moving average method to control correlation length
- Template surfaces generated
- Rescaled to give different RMS
- Translated using Johnson curves to give different skewness and kurtosis
- Ensures asperity location remains same and reduces scatter

Influence of roughness

Surface forms – Sk / Ku

Influence of roughness

Energy Dissipation in Partial Slip

Smooth

Rough A

Rough B

SANDIA-NSF-AWE Workshop on Joints Mechanics, Dartington April 2009

Bottom surface

Imperial College London

Asperity interaction (two rough surfaces)

RMS 0.2µm

Top surface Rad 10mm

Load 50N

Imperial College London Asperity interaction (two rough surfaces)

SANDIA-NSF-AWE Workshop on Joints Mechanics, Dartington April 2009

Imperial College London

Experimental surface analysis

Small section of a Nickel sample, profiled edges Raw data could not be solved – contact on 2 nodes Low pass filter applied to remove spikes Normal load solved satisfactorily

Open questions 1

How can we make sure that our models are a close representation of the real components?

How do we extract the processes and the parameters which characterise the behaviour of our assemblies? (very strong link to well characterised experiments)

Ciavarella et al., JMPS 2006 Petrov et al., ASME 2004

Imperial College London Which Model When? (AFM tip analyses)

- Analysis of AFM tip
- Radius 30 nm
- Compare with Molecular Dynamics Simulations of Luan & Robbins 2006
- Suitability of continuum approach at molecular level
- Surfaces generated using hard sphere model of atoms

B. Luan and M.O. Robbins, 2006, "Contact of single asperities with varying adhesion: Comparing continuum mechanics to atomistic simulations", Physical Review E 74, 026111

Imperial College London AFM tip profiles

SANDIA-NSF-AWE Workshop on Joints Mechanics, Dartington April 2009

SANDIA-NSF-AWE Workshop on Joints Mechanics, Dartington April 2009

Imperial College

Imperial College London AFM tip results – Approach

Continuum model

Molecular Dynamics

Imperial College London AFM tip results – Contact area

Adhesion – Rough surface (v. small scale)

Surface Separation

Pressures

-0.01

Pressures

Imperial College

London

Adhesion – Rough surface (v. small scale)

0.04

0.03

0.02

0.01

0

Imperial College London Adhesion – Effect of scale and roughness

Open questions 2

How do we define the limits of applicability of a model in terms of length- and time-scales

If we could define a modelling framework for the future of joint mechanics modelling, shall we consider the two-way coupling between different scales or shall we just use the information at the lower scales to generate constitutive laws for our continuum descriptions?

Imperial College Many-scales / Many-disciplines Years Time Level 5: Engineering

Lenght (m) 36

Imperial College London Modelling Framework

