Experiments and Modeling at the Microscale

Andreas A. Polycarpou

Microtribodynamics Laboratory

Mechanical Science & Engineering University of Illinois at Urbana-Champaign

Acknowledgements National Science Foundation-CMMI

2nd Workshop on Joints Modeling, Dartington, UK, April 27-29, 2009

Outline

- Continuum modeling approach for contacts with friction from "sub-micron" to the "cm" length scales
- The significance of roughness (measurement and statistical modeling)
- Successful predictions of normal contact stiffness and friction
- Unsuccessful predictions Challenges
- Microslip/partial slip experimental studies
- Summary/Challenges

Modeling Approach

Single Asperity

- Deformable sphere of radius R in contact with a rigid flat
- Loading starts with normal preload (clamping force), P
- Tangential load, Q is applied while keeping P constant
- Interference due to preload, $\omega_0 <$ interference after tg. loading, ω
- Contact diameter due to preload, d₀
 contact diameter after tg. loading,
 d (junction growth)
- •Contact region contains both stick and slip regions before gross sliding occurs (partial slip)

With assumptions one can do, full slip, full stick, elastic plastic

Rough Surface Statistical Model

Despite the known limitations of the GW model (e.g., scale dependence of some of its parameters, asperities act independently, constant R etc, it gives good results in some engineering situations

Note that in this work, models include elastic/plastic contact, may have asymmetric asperity distribution and may contain a trace of thin lubricant on the surface

Do asperities exist?

Surface Roughness at Different Length Scales

Joint-type surfaces of about 1 µm Rq

Comparisons with Experiments

	Individual surface parameters					Combined interface parameters			
	E (GPa)	H (GPa)	$R_q \; (\mu \mathrm{m})$	R_s (μ m)	$\eta(/\mu m^2)$	E^* (GPa)	R_s (μ m)	$\eta(/\mu m^2)$	$R_q \; (\mu \mathrm{m})$
Sample 1 Sample 2	192.92 192.92	2.96 2.96	0.167 0.088	3.555 7.409	0.122 0.144	105.3	2.402	0.1256	0.189

Normal contact stiffness and damping

Material, Roughness Parameters (Physical Parameters) and Model Validation

Model Validation (no surface layers, asperity interactions)

More Comparisons with Experiments

effects and uncertainty

Shi and Polycarpou, JoT, 2008

Improved Contact Models-Needed

 Improved contact models to account for the <u>effects of bulk substrate</u> and <u>asperity</u> interactions

Having shown that the contact and static friction models (with simplifying assumptions) work well in several cases, can we apply them to the case of Joints?

Spherical Elastic Plastic Model with Slip

- Experiments: Varenberg et al.2004
- 5 mm diameter steel ball is fretted on a flat steel specimen
- Each surface has rms roughness of 40-50 nm (reasonable to assume Hertzian spherical contact)
- Oscillation frequency 16.5 Hz
- 2 sets of experiments with loads:
 23, 35 N and imposed tangential displacements of 10 and 1.5 μm
- Only physical parameters input to the model: hardness or yield strength (of the softer material), Young's modulus, Poisson's ratio and radius of the sphere [i.e., no friction coefficient]

Spherical Elastic Plastic Model with Slip

• Kogut & Etsion contact model applied to partial slip

• Transition from elastic to elastic-plastic regime is designated by the critical normal load and interference values

Magnitude of friction is captured well but not the stiffness

Roughness Model with Partial Slip

- Mindlin constant friction (µ=0.3) + Hertzian normal loading + Mindlin tg. Loading/unloading/reloading + GW statistical summation = <u>Björklund (1997)</u>
- Doesn't account for plasticity
- Type of asperity height dist. has almost no effect on microslip behavior (interesting and "opposite" to the gross sliding friction predictions)

No direct experimental comparison, ongoing

Based on physical parameters PLUS Friction Coefficient

Going Forward: Nominally Flat Contact

Friction loop predictions with only physical parameters of material properties, surface roughness parameters, and nominal contact area **INSE/CAPE CIDENTIFY OF CONTRACTOR OF CONTRACTOR**

Experiments (Partial Slip)

Testing machines use the following actuation mechanisms

- •Servo-hydraulic \rightarrow High stress fretting studies
- •Electromagnetic \rightarrow Flexibility in slip amplitude and frequency
- •Piezoelectric \rightarrow Displacements of small amplitude and high frequency (better for micro-slip)

•Rotational to linear motion mechanical devices (DC motor, eccentric cam, crank drive, etc.) → Easy to build and robust.

Stiffness and Damping of Shear Lap Joints

"Rigid" Partial Slip Tester for Joints

Microtribodynamics Lab, UIUC

Micro scale parameters can be measured and used in continuum-based interfacial models to predict contact and friction, including friction loops encountered in joints

Some challenges: (1) Contact mechanics assumptions in the analysis; (2) identifying their range of applicability; (3) Improvements in the contact mechanics and roughness models; (4) correlation of testing methodologies and results

